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Spectrophotometric quantification of turbidity by multiple optical parameters has wide-ranging applications in
material analysis and life sciences. A robust system design needs to combine hardware for precise measurement
of light signals with software to accurately model measurement configuration and rapidly solve a sequence of
challenging inverse problems. We have developed and validated a design approach and performed system
validation based on radiative transfer theory for determination of absorption coefficient, scattering coefficient,
and anisotropy factor without using an integrating sphere. Accurate and rapid determination of parameters and
spectra is achieved for microsphere suspension samples by combining photodiode-based measurement of four
signals with the Monte Carlo simulation and perturbation-based inverse calculations. The three parameters
of microsphere suspension samples have been determined from the measured signals as functions of wavelength
from 400 to 800 nm and agree with calculated results based on the Mie theory. It has been shown that the inverse
problems in the cases of microsphere suspension samples are well posed with convex cost functions to yield unique
solutions, and it takes about 1 min to obtain the three parameters per wavelength. © 2016 Optical Society of America

OCIS codes: (120.6200) Spectrometers and spectroscopic instrumentation; (290.4210) Multiple scattering; (290.3200) Inverse

scattering.
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1. INTRODUCTION

Spectrophotometers are designed to characterize a sample by de-
termination of its optical parameters as functions of wavelength
λ from measured light intensity signals. The instrument essen-
tially solves a sequence of inverse problems at multiple λ values
and has a long history of applications [1]. The current approach
measures the collimated transmittance T c�λ� in the form of ab-
sorbance A�λ�, defined by A � − log�T c�. Using the Beer–
Lambert law, an attenuation coefficient μt can be explicitly
solved by μt�λ� � 2.30A�λ�∕D after correction of reflection
losses at index-mismatched interfaces, where D is the sample
thickness and the contribution of scattered light toT c is assumed
to be negligible. The knowledge of μt�λ�, however, is insufficient
to accurately characterize turbid samples, since μt is the sum of
absorption coefficient μa and scattering coefficient μs according
to the radiative transfer equation (RTE) [2]. In the case of par-
ticle suspensions, one may need both coefficients to fully

characterize such materials, since μa�λ� reports the molecular
composition of the suspension, while μs�λ� profiles the particu-
late morphology on scales close to λ. The inability of the existing
spectrophotometric instrument to do so has long been noted,
and various regimes have been devised to measure scattered light
signals integrated over large angular cones that could be calcu-
lated or estimated quickly with a forward model [3]. Significant
progress has been made over the last few decades on the study of
light transport in turbidmedia and spectrophotometricmethods
for recovering parameters such as μa�λ� and μs�λ� from the mea-
sured signals [4–12]. While these results provide the underlying
principles, no system designs have been developed and validated
that could lead to general-use instruments comparable to
existing spectrophotometers in terms of robustness on the in-
verse solutions and ease of use with simple sample assembly.

A practical approach to solving the inverse problems for the
new spectrophotometric instruments may be best derived from
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the boundary-value problems defined by the time-independent
and single-energy RTE and the Fresnel equations as boundary
conditions [2,13]. Within this approach, a homogeneous turbid
sample is characterized by refractive index n; μa; μs, and single-
scattering phase function p�θ;φ�, where θ, φ are the polar and
azimuthal angles of the scattered light direction, respectively,
from the incident direction. The function p�θ;φ� is often ap-
proximated by an axially symmetric function pHG�cos θ� first
proposed by Henyey and Greenstein, whose form of smooth an-
gular dependence is determined by a single parameter of
anisotropy factor g as the mean value of cos θ [2]. Even with
pHG�cos θ� as the phase function and known refractive index
n, solving the inverse problems rapidly to determine μa; μs,
and g from the measured signals is difficult, since no explicit
solutions are available, and robust algorithms are needed to
solve implicitly by iterations of signal calculations. Extension
to instrumentation presents additional requirements such as
accuracy of measured signals, tolerance to modeling errors for
robust inverse solutions, ease of use, reasonable time to complete,
and cost effectiveness.

The inverse problems of radiative transfer can be solved
with different methods, and diffusion approximations of RTE
have been actively investigated for their capability to obtain
closed-form forward solutions for samples with a regular-
shaped boundary. Despite numerous applications [14], diffu-
sion models with different degrees of approximation do not
provide a robust approach, because the modeling errors in
light transport may become significant in samples of small
to moderate single-scattering albedo a � μs∕μt . Alternatively,
the integro-differential RTE can be solved numerically with
the discrete ordinate method or the adding-doubling method
[2,5–7,10,15]. But the former needs sophisticated code devel-
opment to simulate realistic geometry of sample, holder, and
detectors that may frequently change due to optical designs,
while the latter assumes semi-infinite parallel-plane geometry
to calculate hemispherically integrated reflectance and trans-
mittance.

Instead of solving the RTE directly, a statistical method of
Monte Carlo (MC) simulation has been developed, validated,
and widely accepted to model turbidity for its simple and ver-
satile algorithms of high accuracy according to the radiative
transfer theory [4,8,16,17]. The disadvantage lies in the high
computational cost of the MCmethod to reduce variance in the
results by tracking sufficiently large numbers of photons. Both
the adding-doubling and MC methods have been employed as
the forward model [5,10,15,17,18]. But signal measurements
had to be performed with one or more integrating spheres or
detector scanning to obtain signals over hemispherical or very
large angular ranges, which is necessary for comparison to the
calculated signals by the adding-doubling method or reducing
computational time in MC simulations for a spectrophotom-
eter. Integrating spheres are readily available as spectrophoto-
metric accessories. Their uses, however, are limited in these
instruments because of difficulties in sample assembling and
signal detection in an integrating sphere. For example, the sur-
faces of the sample and detector holders need to be made highly
reflective, 99% in reflectance, facing the inside of the sphere for
accurate measurement of weak scattering signals. The highly

reflective holder surfaces and the sphere’s inside surfaces require
constant monitoring and maintenance for accurate determina-
tion of reflectance and transmittance from the measured signals
[19]. Solving the above problems is not trivial and remains one
of the barriers to development of an instrument with similar
ease of use to the existing spectrophotometers.

In this report we present a spectrophotometric design and
the results of system validation to determine μa�λ�, μs�λ�, and
g�λ� from measured signals without using an integrating
sphere. Measurement of microsphere suspension samples has
been performed to evaluate the accuracy, efficiency, and robust-
ness of this approach, which adopts a fast forward model to
obtain calculated signals based on an individual photon
tracking MC (iMC) method accelerated through a graphic
processing unit (GPU) implementation and a rapid perturba-
tion method [11]. The high efficiency of the signal calculations
enables the development of an instrument system for signal
measurement using single photodiodes. The high accuracy of
the modeling of the incident beam profile and detection geom-
etry renders a robust inverse algorithm, as demonstrated by the
validation results obtained with aqueous suspensions of poly-
styrene microspheres. We further show that critical elements of
design have to be implemented in data acquisition and process-
ing to ensure the robustness of the new instrument system.

2. METHODS

A. Experimental System
As shown in Fig. 1, a tunable light source consisting of a 175W
xenon source (XL1-175-A, WavMed Technologies Corp.) and

Fig. 1. (a) Schematic of the experimental setup. XLS, xenon light
source; L1 and L2, lenses; CH, mechanical chopper; M, monochro-
mator; M1 to M5, spherical or plane mirrors; A, aperture; BS, beam
splitter; D1 to D4, photodiode detectors; SS, sample and holder
assembly; PH, pinhole. The setup consists of two sections with the
incident and measured light beams propagating either in the x–y (hori-
zontal) plane in the top view or the x–z (vertical) plane in the side view.
(b) A top-view photo of the setup, (c) the detection configuration for
MC simulations of the measured signals corresponding to the part of
(a) inside the dashed lines.
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a monochromator (Omni-λ3005, Zolix Instruments Co., LTD)
provides a nearly collimated beam with a 2 nm bandwidth and
4.6 mm × 11.0 mm cross section at the front surface of the sam-
ple holder. The beam is modulated by a chopper at frequency
f 0 � 1000 Hz, and its power is monitored by the photodiode
detector D1 as I 1. The modulated beam propagating along the x
axis is then reflected into the vertical x–z plane for incidence on
a sample holder in the x–y plane with an angle of θ0 from the z
axis, as depicted in the side-view section of Fig. 1.

The placement of the sample holder in the horizontal plane
can effectively reduce the settling speed of the microsphere or
cells in their suspensions, and thus the sample heterogeneity.
The light powers are measured by three photodiode detectors:
D2 for the diffusely reflected light from the sample in the
holder with output signal I2; D3 for the diffusely transmitted
light with I3; D4 for the collimated transmitted light with I 4.
The incident beam has an angle from the normal of the holder’s
front surface of θ0 � 7.0°. The locations of the D2 and D3
detectors are determined from their distances to the front
and back surfaces’ centers of dR � 70 mm and dT � 85 mm,
respectively, and orientation angles of θR � 40° and θT � 35°.
The geometry of detection can be accurately modeled in MC
simulations, as shown in Fig. 1.

Spatial filtering is implemented with mirror M5 and pinhole
PH for measurement of I 4 to reduce the contribution from
the forward scatter. The photocurrent signals from the four de-
tectors are fed to their respective channels of low-pass filtering
and transimpedance amplification with adjustable gains fol-
lowed by a 16-bit A/D converter (USB-AI16-16A, Access I/O
Products, Inc.). The four outputs of the A/D converter are
acquired by a host PC over a sampling period of 1 s at each
wavelength and Fourier transformed to the extract desired
signals at f 0, which are used in turn to obtain the measured
signals of diffuse reflectance Rd , diffuse transmittance T d , and
the ratio of I4∕I 1 proportional to collimated transmittance T c .
The detector sensitivities and amplification gains of the four are
calibrated so that the same optical power signal produces the
same digital output for each channel.

B. Inverse Determination of Parameters
The forward model for obtaining calculated signals of diffuse
reflectance Rdc and diffuse transmittance T dc consists of GPU-
iMC simulations and perturbation calculations. The GPU-iMC
simulation solves the boundary value problems defined by the
RTE and Fresnel equations. The time-independent, single-
energy, and source-free form of the RTE can be written as [6]

s ·∇L�r;s��−�μa�μs�L�r;s��μs

Z
4π
p�s;s 0�L�r;s 0�dω 0; (1)

where L�r; s� is the light radiance at location r along the direc-
tion given by the unit vector s and p�s; s 0� � p�θ;φ� can be
approximated by pHG�cos θ�, as discussed earlier. Figure 1 out-
lines the detection geometry, which has been described in detail
elsewhere [11,17,20,21]. Briefly, the GPU-iMC simulation
tracks individual photons in a phantom of sample holder and
a turbid sample with the incident light beam represented by
N 0 incident photons to accurately depict the beam’s diverging
angles and profile at the holder’s front surface [20,21]. Signal
calculations start at the first wavelength with a GPU-iMC

simulation using sample parameters initialized by the user as
μa0 � 0, μs0 � μt0a0, and gs0 for a “white” reference sample.
As each tracked photon enters the turbid sample inside the
holder made of glass, its trajectory is followed through a sequence
of scattering events until the photon hits a sample–holder inter-
face. The Henyey–Greenstein function pHG�cos θ� is used in
iMC code as the phase function. The Fresnel reflectance for un-
polarized light is calculated from the local incident angle and
refractive indices of the sample, and is compared to a random
number (RND) uniformly distributed in [0,1] to decide if
the photon reflects from or transmits through the interface.
Similar treatments are performed at the holder–air interfaces.
The photons exiting from the sample holder either hit one of
the two detectors D2 and D3 or escape from the holder.
Each photon hitting a detector is registered, and its accumulated
path length within the “white” reference sample is stored as Lso
[11]. At the completion of tracking theN 0 incident photons, the
numbers of photons hitting either D2 or D3 are tallied, respec-
tively, as N 20 or N 30.

Following the GPU-iMC simulation, a perturbation
method is employed to update the calculated signals of Rdc and
T dc for a simulated sample of �μai; μs0; g0� by calculation of the
“perturbed” number of photons hitting the D2 or D3 detector
as N 2 or N 3 from N 20 or N 30, respectively, with the stored
tracking information Lso of the reference sample. With the ab-
sorption coefficient raised from μa0 � 0 to μai, a total travel
distance Lai is obtained for each registered photon by

Lai � −
ln�RND�

μai
: (2)

If Lso ≥ Lai, then the registered photon is removed by updating
the total hitting number as N i � N i0 − 1, with i � 2 or 3;
otherwise N i remains unchanged. Upon completion of Lai cal-
culations for all registered photons, the calculated signals are
derived for the simulated sample of �μai; μs0; g0� as

Rdc �
N 2

N 0

; T dc �
N 3

N 0

: (3)

The perturbation calculation after a GPU-iMC simulation is
iterated to obtain Rdc and T dc from Eq. (3) for any simulated
sample of �μa; μs ; g� from the stored tracking records of Lso
obtained with the reference sample of �μa0 � 0; μs0; g0�. By
following the two rules detailed previously in [11], we calculate
the values of Rdc and T dc by updating Ls from Ls0 for each
registered photon. The perturbation method thus allows rapid
updating of Rdc and T dc from the initially calculated values by
the GPU-iMC simulation at the first wavelength or from the
values determined at the previous wavelengths.

With Rd , T d , and μt as the input parameters at each λ, the
calculated signals of Rdc and T dc are obtained by either MC or
perturbation methods using the initial values of albedo a �
μs∕μt , g , and known refractive index n for water followed by
iteration [22]. Minimizing a cost function defined below guides
the iteration process by variation of a and g from initial values:

δ �
�
Rd − Rdc

Rd

�
2

�
�
T d − T dc

T d

�
2

: (4)

The iteration process stops when δ ≤ δmin is achieved at each λ,
with δmin � 0.0005 for this study. The rule for varying a and g
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is based on the relative differences between the calculated and
measured signals: a is increased (or decreased) if Rdc � T dc is
less (or larger) than Rd � T d , while g is increased (or de-
creased) if Rdc∕T dc is larger (or less) than Rd∕T d . GPU-
iMC simulations are performed on a personal computer with
one low-cost graphics board (GT640, NVIDIA) for GPU-iMC
simulations, and it takes 16–25 s to complete one simulation
for tracking N 0 � 1 × 107 photons for the results presented
here. The variances of the MC calculated signals of Rdc and
T dc are found to be less than 1.0% if the solid angles of photon
detection for the simulated detectors are about 0.01 (sr).

3. RESULTS

To validate the new approach, we determined the optical
parameters of μa�λ�, μs�λ� and g�λ� with the diluted micro-
sphere suspension samples from 400 to 800 nm in steps of
40 nm. A polystyrene microsphere suspension (No. 6-1-0090,
Tianjin Baseline ChromTech Research Centre) was purchased
for this study, which has a nominal value of weight/volume
(w/v) concentration at 2.5% and a diameter d of 0.9 μm for
a mean value and 10% for the coefficient of variation. The ac-
tual concentration of the purchased suspension was found to be
2.23% w/v by measurement of the suspension and microsphere
masses, respectively, before and after freeze-drying of the sus-
pension. With the corrected w/v concentration and micro-
sphere diameter d, we determined the number concentration
of the microsphere suspension to be ρ � 1.44 × 107(mm−3)
after a fourfold dilution in volume with distilled water for sub-
sequent measurements. Samples were prepared by pipetting the
diluted suspension into a space defined by a ring-shaped spacer
with a 15.9 mm inside diameter between two glass slices that
were 1.0 and 0.5 mm in thickness and examined under a mi-
croscope to ensure no formation of aggregated microspheres.
The sample thickness D was determined by that of the spacer
for measurement of Rd ; T d , and I 4∕I 1 at each λ.

At each λ, the measured signals of diffuse reflectance Rd �
I 2∕cI1 and diffuse transmittance T d � I3∕cI 1 were acquired.
The calibration factor c was determined from the ratio of light
power incident on the sample holder to that measured by
detector D1 as follows:

c � �1 − RBS�R4

RBSR3

; (5)

where RBS; R3, and R4 are, respectively, the measured values of
reflectance of the beam splitter and mirrors M3 and M4. The
collimated transmittance T c of a sample could be determined
from I4 and I 1, which, however, requires calibration to remove
the effects of scattered light and the sample holder. Instead, we
employed the ratios I4∕I 1 to determine the attenuation coef-
ficient μt at each wavelength from the slope of the straight line
portion of the ln�I4∕I 1� versus D curve. As shown in Fig. 2
with five samples of varying D, the contribution of the forward
light scatter to ln�I 4∕I 1� starts to become appreciable and
dominate as D or optical thickness τ � μtD increases in the
case of λ � 440 nm with a large value of μs. For the following
results, we obtained μt from the slope of three samples of
D � 0.318, 0.381, and 0.504 mm, as predicted by the

Beer–Lambert law, to ensure that they are on a straight line
on the semi-log scale at all wavelengths.

With μt�λ�, Rd �λ�, and T d �λ� as the input data, the scatter-
ing albedo a�λ� � μs�λ�∕μt�λ� and anisotropy factor g�λ� were
determined by iterating with different values of a and g to up-
date Rdc and T dc with the goal of minimizing the cost function
δ given in Eq. (4). Most of the updates to Rdc and T dc were
carried out with the perturbation method from the stored pho-
ton tracking data by the GPU-iMC method, which took only
milliseconds to complete. When a and g deviated from the
values used in the previous GPU-iMC simulation by �10%
or more, a new simulation was performed. It has been demon-
strated that the above constraint ensures the differences
between Rdc and T dc values obtained by the perturbation
method and GPU-iMC simulations are less than �6%, which
is about the same as the experimental errors of Rd and T d [11].
Unlike the constraint on the differences between μs and μs0 or g
and g0, perturbation-based updating of Rdc and T dc by raising
μa from μa0 � 0 is very accurate for any values of μa [11]. Use of
the perturbation method markedly reduces the cost of forward
calculations, since around 90% of the approximately 20–30 iter-
ations per wavelength were performed by perturbation.

Figure 3 presents the optical parameters determined from the
microsphere suspension samples as functions of λ. In the same
figure we plot the calculated optical parameters of μam; μsm, and
gm based on the Mie code provided in [23] and the measured
value of microsphere concentration ρ. Specifically, the values of
the complex refractive index data of the polystyrene microspheres
in [24] and real refractive index of water in [25] were used to
calculate the cross sections ofC abs; C sca, and gm. Throughmicro-
scopic examination of multiple samples of the microsphere sus-
pension, we verified that the samples of small D values can be
regarded as monodispersed without aggregated microspheres.
This allows us to obtain the calculated absorption and scattering
coefficients using μam � ρC abs and μsm � ρC sca. Absorption by
water is negligible in this spectral region [26].

The time to complete inverse determination of these param-
eters at 11 values of λ for each sample was determined by the
total time of the GPU-iMC simulations, which took about
11 × 3 × 20 s � 11 min on average for each sample. The mea-
sured values of μs and g exhibit good agreement with the Mie

Fig. 2. Plot of the measured signals of collimated transmitted light
power ln�I4∕I 1� versus the sample thickness D at two wavelengths
for microsphere suspension samples. The lines are based on the
Beer–Lambert law for collimated transmittance.
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calculated values with the 10% variation of the microsphere
diameters. Relatively large differences between the measured
and calculated values of μa over the visible region of wavelength
indicate a lower limit for determination of μa with the pre-
sented approach for samples of strong scattering with
μs∕μa > 100.

A robust solution for an implicit inverse problem requires
not only an efficient iteration algorithm but also uniqueness
guaranteed by accurate signal measurement and forward mod-
eling for simulating signals. In an earlier study with intralipid
solution samples, we initially used photodiodes of 13.0 mm2 in
the sensor area as the Rd and T d detectors with respective
solid angles for detection of scattered light of 0.00265 and
0.00180 (sr). In certain cases of longer wavelengths such as
λ � 720 nm, the cost function defined in Eq. (4) could not
be reduced to satisfy δ ≤ δmin even by setting μa to 0 because
Rdc and T dc were significantly smaller than Rd and T d . To
correct the nonconverging problems, we investigated various
approaches and found an effective solution by using large pho-
todiodes of 100 mm2 in the sensor area to increase the corre-
sponding solid angles to 0.0204 and 0.0138 (sr). These large
photodiodes were employed in the present study of micro-
sphere suspension samples to obtain the results shown in Fig. 3.

To verify the uniqueness of the solutions for the micro-
sphere suspension sample with the larger Rd and T d detectors,
we mapped the cost function δ in the 2D parameter space of a
and g at selected wavelengths, and two examples are plotted in
Fig. 4. From these results one can clearly see that the δ�a; g�

functions have smooth convex forms and the corresponding
optimization problems to minimize δ function well with a sin-
gle minimum that can be reached from any initial location in
the parameter space. In these cases, a conventional gradient
descent approach suffices to yield efficient iterations [16,27].

It is interesting to examine the effects of the angular cones
and the positions of the detectors on the convergence of the
solutions. The need for large collection cones to detect the
scattered light signals may be attributed to the deviation of the
angular distribution of scattered light from the smooth function
pHG�θ�, used as p�θ;φ� in our radiative transfer model. With
small cones, the light signals at certain λ scattered by the sample
and detected at certain angular positions could be larger than
the calculated ones, even with μa reduced to 0. This possibility
can be substantially reduced by enlarging the detection cones to
obtain angularly integrated signals comparable to the calculated
signals predicted with pHG�θ�, which can be regarded as an
angularly smoothed representation of the actual phase function.
The robustness is corroborated by the fact that the angular po-
sitions of the large sensors for measurement of Rd and T d sig-
nals, θR and θD shown in Fig. 1, do not affect the results of the
inverse solution (data not shown). We would like to point out
that the above conclusions are correct under the condition that
the two detectors are kept on the two sides of the direction of
θ � 90° with a sufficiently large angular distance, 30° or larger,
between them. They should also be positioned, respectively, to
avoid specular reflection from the glass sample holder or the
forward scatter with scattering angles less than 10°.

4. DISCUSSION

Light scattering in turbid materials is inherently anisotropic,
and its angular dependence in terms of p�θ;φ� varies widely
among different types of materials. Therefore, a “perfect” ap-
proach to analyze material turbidity would require measure-
ment of scattered light at many angles, which is very difficult,
if not impossible, to implement as an instrumentation method.
In contrast, an efficient and thus practical method should take
as few measured signals as possible to extract characteristic
parameters and serve as common ground for quantitative com-
parison and classification of different materials. Such a method
may not be precise but could offer a sufficiently accurate and
consequently practical approach to analyze turbid materials
with reasonable tolerance to errors in the measured signals.

Fig. 3. Symbols and error bars are the mean values and standard
deviations, respectively, of μa�λ�; μs�λ�, and g�λ� determined from
three suspension samples of thickness D � 0.318, 0.381, and
0.504 mm. The lines and error bars represent the calculated values
of μam�λ�; μsm�λ�, and gm�λ� by the Mie theory using the mean value
of diameter d � 0.90 μm and its �10% varied values of d� �
0.99 μm and d − � 0.81 μm.

Fig. 4. Contour plots of the cost function in the parameter space of
a and g for a microsphere suspension sample of D � 0.318 mm:
(a) λ � 480 nm and (b) λ � 720 nm.
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In the approach presented here, the framework of radiative
transfer theory offers much-improved accuracy over the
Beer–Lambert law for quantification of turbidity, even using
pHG�cos θ� to approximate the unknown scattering phase func-
tion p�θ;φ�. While pHG�cos θ� as the scattering phase function
can become erroneous in reproducing the actual angular distri-
bution of scattered light for turbid materials, it nevertheless
provides in certain cases an angularly smoothed version of
the actual phase function, which may never be precisely known
[28]. Moreover, pHG�cos θ� provides a rational basis for com-
paring different material types based on their ability to direct
light scatter and considerably reduces the complexity of solving
the inverse radiative transfer problems by decreasing the
number of adjustable parameters. Further reduction of time
to calculate signals is possible, since the speed of GPU-iMC
simulations are scalable with the number of GPU cores in
and performance of the graphics board. The running time
of 1 min per wavelength for results shown in Fig. 3 with
one nondedicated graphics board of 384 GPU cores can be
readily reduced with a computer with one or multiple dedicated
graphics boards of more GPU cores.

Validation results from the microsphere suspension samples
demonstrate, to a certain degree, the robustness of the new
approach in the determination of the three parameters
μa; μs, and g of the suspension samples, which are consistent
with the literature [29–31]. The relative errors in the determi-
nation of μa can become large in cases where μs∕μa is lager than
100. For other turbid materials, the approach should be evalu-
ated further for its accuracy in determining μa; μs, and g using
pHG�cos θ� to approximate the unknown p�θ;φ�. In addition,
there appears to be a floor of sensitivity in determining μa at a
level of about 0.05 (mm−1) for the method described here. The
major source of these limitations in the method presented re-
lates to the measurement of the collimated transmitted signal I 4
to determine μt through the Beer–Lambert law, which requires
samples of small optical thickness τ. As shown in Fig. 2, the
portion of ln�I 4∕I 1� contributed by the forward scatter be-
comes significant when τ exceeds 5. For samples of strong tur-
bidity, a very small thickness D needs to be maintained, which
is difficult to prepare and contributes to measurement errors in
D values and the effect of air bubbles trapped inside the sample
holder. Furthermore, multiple samples of varying thickness
have to be measured to ensure accurate determination of μt
from the linear slope of the ln�I 4∕I 1� versus D curve. Further
improvement in the measurement accuracy and efficiency
could be achieved by eliminating the use of the Beer–Lambert
law to determine μt from I4 or T c, which is possible with the
new approach. The same GPU-iMC based forward model
could be modified to calculate forward transmittance, defined
as T f c , which includes both the collimated transmitted light
and forward scatter. The spatial filtering based on the spherical
mirror M6 and pinhole PH in Fig. 1 can be easily simulated by
backprojection of the collection cone of PH to the exit surface
of the sample holder. The calculated signal T f c can be com-
pared to the measured signals of T f � I 4∕cI 1, and their
squared relative difference can be added as the third term to
the cost function δ in Eq. (4). These potential improvements
are currently investigated, and their implementation should

further relax the limits on τ and D and increase the modeling
accuracy and robustness of the new spectrophotometric
instruments.

5. SUMMARY

We presented a spectrophotometric design based on MC mod-
eling to rapidly determine three optical parameters of turbid
samples and their spectra without using an integrating sphere.
Measurement of highly turbid microsphere suspension samples
yielded results that agree with the Mie theory using an approxi-
mate phase function pHG�cos θ�. This approach is the first step
toward the future development of spectrophotometers for de-
termination of turbid parameters, and additional studies need
to be pursued to demonstrate the robustness of the system.
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